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SUMMARY 

This paper presents an optimality criterion ( O C )  method f o r  
minimum-weight design of structures having multiple constraints 
on natural frequencies. In this work a new resizing strate2y is 
developed based on "relaxation" techniques. A computationally 
adaptive control parameter is used in conjunction w ~ t h  euisting 
OC recursive formulae to promote convergence of optimum 
structural designs. Some considerations regarding the c'.jupling o f  
the modified Aitken accelerator with the OC method are discussed. 
Improved and rapidly converged minimum-weight designs are 
obtained when using an under-relaxed recursive scheme combined 
with the modified Aitken accelerator. 

INTRODUCTION 

In recently published literature regarding structural 
optimization with multiple frequency constraints [ 1 , 2 ] ,  the 
algorithms were applied to truss systems, taking advantage of 
their special characteristics (i.e., single design variable per 
element, structural matrices linearly proportional to the design 
variables,, constant stress elements, etc.). In search f o r  optimal 
values of design parameters in minimum weight design the 
iterative approach based on alternately satisfying the 
constraints (scaling) and applying an "optimality criterion" 
(resizing) may give oscillatory results which might not converge; 
or they may converge to local extrema at the expense of an 
increased number of iterations. 

The resizing formulae used in [ 1 , 2 ]  employed an exponential 
control parameter as the step size. The control parameter was 
reduced to stabilize the iterative design cycle and to assure 
convergence. Basically, the control parameter was kept constant 
through all the iterations, as the structural weight w'as 
continually reduced; or if a sudden rise in the weight was 
observed, the iterative design cycle was momentarily stalled and 
the control parameter was reduced until a decrease in the weight 
was obtained. For various single and multiple frequency 
constraint conditions, optimum designs were presented. Although, 
the final designs being the real optimum were questionable. 

In this work a new resizing strategy is developed based on 
"relaxation'' techniques. A computationally adaptive control 
parameter is used in conjunction with OC recursive formulae 
currently used to obtain minimum weight design of truss system 
[ l - 3 1 .  The new control parameter is adjusted by monitoring the 
local histories of scaled weights calculated in the iterative 
design cycle. A s  the step size is reduced, the rate of 
convergence is ,reduced. Hence, the convergence rate is increased 
using an acceleration technique. The modified Aitken accelerator 
[ 4 , 5 1  is implemented to extrapolate values of structural weight 
from the local history of the design cycle to accelerate 
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convergence towards an optimal design. Structural element sizes 
and natural frequencies are presented for optimally designed 
truss systems under various frequency constraint conditions. 
Design cycle histories of structural weights and control 
parameters are charted to compare the performance of different 
recursive strategies to modify the design variables and tCJ 
estimate the Lagrange multipliers. 

FREQUENCY ANALYSIS 

The square of the jth natural frequency for the case of  
undamped vibration of a discretized structure can be written as 

Oj2 = {qj}TIKI{qJ) ( 1 )  

(rhere [ K ]  is the stiffness matrix, and {qj} is the j t h  vibration 
mode normalized with respect to the total mass, [Ml=[MstMc], 
consisting o f  structural and nonstructural mass. The gradient of 
the natural frequency with respect to the design variables xi 
(member cross-sectional areas)isobtained by differentiating Eq. 
(1). The result is 

where {qj }i , [ki], and [mi] denote components of the structural 
matrices associated with the it h  element xi, and ( 1 ,  represents 
a partial differentiation. 

OPTIMIZATION PROCEDURE 

The optimization problem is defined as 

minimize the structural weight 

( 3 )  W ( x i )  = P i  li X i  (i=1,2,..01n) 

subject to m constraints 

g j ( x i )  = O j  - O j *  = 0 (j=1,2, . . . ,  k )  
gj(xi) = O j  - Oj' < 0 (j=k+l, ..., m) ( 4 )  

where p i  is the mass density, Xi is the design variable, and l i  
is the length of the element. In Eq. ( 4 )  Oj and w j *  are the 
actual and the desired values of the frequency constraints. In 
addition, minimum limits are prescribed on the design variables: 
xi > xil. 

Using Eqs. ( 3 )  and ( 4 ) ,  the Lagrangian function, L, can be 
written as 
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where x j  are the Lagrange multipliers. 

Differentiating Eq. ( 5 )  with respect to the design 
variables and setting the resulting equations to zero, the 
optimality criterion can be written as: 

eij Xj = 1 (i=1,2,. ..,n ; j=1,2, . . . ,  m )  ( 6 )  

where 

where the Lagrangian energy density, eij, represents the ratio of 
the gradient .for the natural frequency constraint (Eq. 2 )  to the 
gradient of the objective function, given as (Pili). 

Using Eq. ( 6 1 ,  one can write recursive relations to modify 
the design variables. Recursive relations to estimate the 
Lagrange multipliers can be written by assuming that all the 
constraints in Eq. ( 4 )  are equality constraints [31. In either 
case these recursive relations can be written in an exponential 
or a linearized form. In the exponential recursive relations the 
design variables (or Lagrange multipliers) are modified by 
multiplying them by a quantity which is equal to unity at the 
optimum, and in the linear recursive relations the design 
variables (Lagrange multipliers) are modified by adding a 
quantity which is equal to zero at the optimum. Note that the 
linear recursive relation f o r  the Lagrange multipliers is an 
approximation to a set of linear equations that can be used to 
determine the Lagrange multipliers [1,3]. Nonetheless, it is 
possible to promote the convergence of these relations by 
incorporating a simple technique known as relaxation. Such a 
modification is used in this work: 

To modify the design variables: 

To estimate the Lagrange multipliers: 

where the superscripts k and ktl denote iteration numbers. The 
quantity (l/r), is the step size used in the algorithms reported 
in [1,2]. In the present algorithm this step size is immobilized 
by setting it to a constant value, l/r=0.5. Alternatively, a more 
adaptive control parameter s ,  is utilized. At the beginning of 
the design cycle the control parameter is set to unity. 
Henceforth, the value of s is adjusted by monitoring the local 
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histories of structural weights calculated in the iterative 
design cycle. For structural weight histories exhibiting an 
oscillatory pattern of convergence, an optimal value of s is 
chosen using the following algorithm: If Wkti>(1/2)[Wk-Wk-1] or 
Wk+l>Wk>Wk-1 and the current value of s is above a specified 
minimum value, then s is reduced to s / 2 .  ( F o r  structural weight 
histories displaying a pattern of convergence other than 
oscillatory, the algorithm can be appropriately refined. A t  the 
optimum the optimality criterion (Eq. 6 )  and the constraints [ E q .  
4) are satisfied. Hence, Eqs. (8-9) converge to S i k t 1  = x l k  and 
Eqs,. ( 1 0 - 1 1 )  converge to X j k + l  = A J k .  

The j t h  Lagrange multiplier for the j th  frequency constraint 
also can be approximated by a simple expression derived from a 
single constraint condition [ 2 , 6 1  

Xj = w /0j2 mi 
where 

[Ms 1 
mi = , h F  

( 1 2 )  

( 1 3 )  

Equation (12) is used as initial values in the recursive E q s .  
(10-11). 

After the structural members are modified using Eqs. ( 8 )  or 
( 9 1 ,  they are uniformly scaled by a factor fj corresponding to 
the j t h  frequency constraint. The relationship between the 
unscaled design x i  and the scaled design Xie is given by 

The scale factor fj is computed as follows [ 2 , 6 ] :  

fj = ,  miRj2 t Rj2m2 < 1 
1 - Rj*m2 

fj = R j 2  Y otherwise (15) 
where 

(16) 

and Rj2 represents the frequency target ratio given by 

In search for optimal values of design parameters in minimum 
weight design the iterative approach based on alternately 
satisfying the constraints (Eqs. 14-17) and applying the 
optimality criterion (Eqs. 6 )  may give oscillatory results which 
might not converge; o r  they may converge to local extrema at.the 
expense of an increased number of iterations, The control 
parameter s, adopted in Eqs, (8-11) controls the step size of  the 
recursive relations and stabilizes the convergence of the 
iterative design cycle. A drawback is that the convergence rate 
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is slowed as the control parameter is reduced. This is primarily 
due to the fact that a smaller value of s reduces gains towards 
meeting the optimality condition. Hence, the convergence rate of 
the iterative process is improved with two-fold objectives in 
mind: ( 1 )  maintaining as large of a value €or  s as possible 
during the design cycle, and ( 2 )  estrapolating structural 
information from the local history of the design cycle t c .  
accelerate the convergence rate. 

MODIFIED AITKEN ACCELERATOR 

The convergence rate of the iterative process can be enhanced 
by using an accelerator. An appropriate one has been proposed by- 
Boyle and Jennings [4,53. The Aitken accelerator is a numerical 
technique whereby three consecutive results of an iterative 
process are extrapolated to obtain improved results on the 
assumption that the error curve of the iterative process decays 
exponentionally. The adaptability of Aitken's accelerator for the 
computer however, is unpredictable given the possibility of a 
singular denominator in the predictor algorithm. Nonetheless, a 
modified Aitken accelerator was developed by Jennings [j] €or 
general multivariable iterative problems. The predictor algorithm 
for the modified Aitken accelerator requires only one division as 
opposed to one for each variable- and allows the divisor to be 
chosen to avoid the possibility of a zero value. 

-7 

In this work, local histories of structural weight are 
monitored for convergence patterns which are not monotonic. If 
the structural weight histories before the current design exhibit 
an oscillatory pattern of convergence and show a mark increase in 
value, then continued computations with the current design are 
bypassed while an improved design (i.e., one that will result in 
a reduced scaled weight) is obtained using the modified .4itken 
accelerator. 

Let X i k - 3 ,  xik-2, and xik-1 be design variables obtained from 
three consecutive iterations of the design cycle and let Xik be 
the desired variables for a current design. By letting 

the adopted procedure [ 5 ]  f o r  finding an improved (accelerated) 
design xa, may be written as 

I where S, is defined as the acceleration factor 

In general, Xia satisfies neither the optimality condition 
(Eq. 6 )  nor the frequency constraints. Nonetheless, the design 
cycle is continued after an acceleration by applying the 
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optimality condition with the improved design x l a :  

The k t h  design is then scaled to satisfy the constraints using 
Eq. '(14). (Note that the control parameter's is appropriately 
adjusted as previously outlined.) 

OPTIMIZATION ALGORITHM 

The main steps of the present optimization algorithm are 

( 4 )  

Assign uniform sizes to all elements (set s=l, k=l). 
Perform frequency analysis (Eqs. 1-2) 
Scale the design until frequency constraints are obtained 
within the required accuracy (Eqs. 14-17). 
Calculate the scaled weight of the structure using (Eq. 3 )  
and the scaled design variables (Eq. 14). 
For iteration k=4  or greater, check for oscillatory 
convergence pattern of scaled weights in the last three 
consecutive k-1, k-2, k-3 iterations. If this is the case, 
then apply the modified Aitken accelerator to obtain an 
improved design (Eq. 19) and modify the design variables 
using Eqs. (20 or 21 and 12, 2 2  or 23). Else continue to 
step ( 6 ) .  
Determine the Lagrange multipliers (Eqs, 10,ll or 12). 
Modify the design variables (Eqs. 8 or 9). 
Repeat steps 2, 3 and 4. 
For iteration k=3 and greater: If . W k t l  > (1/2) [Wk - W k - l l  
or W k t l  > Wk > W r - l  and s > specified minimum value, then s 
is equal to s / 2  and go to step 7 ;  E l s e  go to step 5 .  
Steps 5 - 9  represent one iteration in the design cyc le  
history. 
Repeat until difference in weight is less than specified 
tolerance. 

RESULTS AND DISCUSSIONS 

The effectiveness of the above algorithm was demonstrated by 
designing a 10 member truss (Figure 11, a classical problem in 
the structural optimization literature [l-31. The elastic modulus 
was 107 psi, and the weight density was 0.1 psi. A nonstructural 
mass of 2 . 5 8 8  lb-secz/in was added to the four free nodes. All 
the membercross-sectional areas were given uniform sizes for an 
initial design. During the design cycle history, a 1ower.limit 
value of 0 . 1  in2 was imposed on member sizes. The natural 
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frequencies and mode shapes were computed using a Jacobi method. 

Table 1 presents initial and final frequencies and structural 
weight at the optimum design for various frequency constraint 
conditions. Table 2 gives the optimum member sizes. As indicated 
in Tables 1 and 2, Eq. 8 was used to modify designs and E q .  1 2  
was used to estimate the Lagrange multipliers. Reference [ 2 ]  
presents optimization studies using similar formiulae f o r  the same 
ten member truss subjected to the same constraint conditions. Tn 
Tables 1 and 2 these results are shown in parenthes-s € o r  
comparison with those obtained in the present analysis. 

The ten member truss was designed with both single and 
multiple frequency constraint conditions (Tables 1 and 2). The 
first set of results (Case 1 )  was obtained with a single 
constraint on the second frequency ( a2 = l o .  OH2 1 .  The nest three 
sets of results involved multiple frequency constraints: (Case 21 
01=7.OHz, U2>15.OHz; (Case 3) al=7.0Hz, a2>15.OHz, o3>2O.OHz; 
(Case 4 1 ,  ai>3.5Hz, Uz>lO.OHz, a3>14.OHz. 

At the initial design the structural weight was 4000 lbs. 
Furthermore, the first eight frequencies were on the avera3e 
approximately 4.26 percent higher than those of reference [ 2 ] .  
Resulting design weights obtained by the present analysis were 
significantly lower than those obtained in [ 2 1 .  For example, 
Cases 1 and 4 showed mark improvements in structural weight with 
approximately 15.7 and 15.88 percent decreases, respectively. 
Additional1y;the first eight frequencies calculated for Cases 1 
and 4 were decreased by an average of approximately 11.13 and 
12.63 percent, respectively. For Case 4 the constraint on the 
first and second frequencies was met to within 6 and 3.5 percent, 
respectively. The third frequency constraint in Case 4 was 
completely satisfied, as well as the second frequency constraint 
in Case 1. In Case 2 a 3.01 percent decrease from the weight 
reported in [2] was calculated, while a 9.78 percent decrease in 
weight was obtained for Case 3 .  F o r  the c.alculated frequencies in 
Cases 2 and 3 ,  there was less than 1 average percent change from 
those reported in [ 2 ] .  

Reference [l] presents optimization studies of a thirty-eight 
member truss (Figure 2) with multiple frequency limits. The 
elastic modulus and weight density of the material were lo7 psi 
and 0.1 lb/in3, respectively. At nodes 8 and 1 4  a nonstructural 
mass of 0.5 lb-sec2/in was included. Lower limit on the design 
variables was 0 . 0 0 5  in2. 

Tables 3 and 4 show design cycle histories of structural 
weight and frequencies of a 38 member truss when a specified band 
between the square of the first and second frequency is 
increased: [ (Case i )  @i2=2500rad2/sec2 , 0 2 2  >2500rad2/sec2 ; 
(Case ii) 0i2=2500rad2/sec2, 0 2 2  >3000rad2/sec2, respectively; ] 
The first set of results were obtained by the present analysis 
using Eq. (8) to modify the design variables and Eq. (12.) to 
estimate the Lagrange multipliers. The asterisk associated with 
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an iteration indicates the use of  the modified Aitken’s 
accelerator (Eq. 19) and the corresponding Eqs. (21-24). The 
second set of results was taken from reference [l]. Khot [ l ]  
reported real optimum designs because the minimum weights 
obtained were equal to the dual weight of  the structure, which 
was the difference between the total weight and the weight of 
passive elements (such as elements at minimum gage). 

From Tables 3 and 4 it is seen that with the relative a reas  of 
all members equal to unity the initial scaled weight of the 
structure was 27.74 compared to 5 2 . 3 0  obtained in [ l ] .  The 
present authors could not reach any ,justifiable conclusions f o r  
the difference. However, it is seen that the weights obtained in 
this work quickly converged to a 8.61 percent lower weight for 
Case (i) (Table 3). Comparing the results f o r  Case (ii) (Table 
4 ) ,  it is seen that the present algorithm calculated a 7.04 
percent decrease in weight. 

The example ten bar truss was redesigned with the constraints 
of Case 4. The two recursive relations used to modify the design 
variables were (1) the exponential relation (Eq. 8 ) ;  ( ‘ 2 )  the 
linear relation (Eq. 9). The Lagrange multipliers for the above 
two cases were determined by using ( 1 )  the approximate relation 
[2] (Eq. 12); ( 2 )  the exponential relation (Eq. 10); ( 3 )  the 
linear relation (Eq. 11). 

The design cycle history of structural weights using 
combinations of the above recursive formulae (Cases A-F) is given 
in Table 5 .  This table also contains CPU time (sec) using double 
precision arithmetic on a 32-bit IBM machine. Table 6 gives 
design cycle histories of the control parameter s ,  used in Cases 
A-F. (Note that the control parameter is not used in Eq. (12) of 
Cases A-B). The iteration history for the six cases is shown in 
Figure 3 .  At this time it is premature to draw general 
conclusions at this time on which case performs the best in a 
wide variety of design situations. Although all the cases appear 
to illustrate an average degree of convergence, a value of s near 
unity is preferred in Eq. ( 8  or 9 )  because this ensures a larger 
contribution in satisfying the optimality condition. This 
inevitably leads to a more rapid convergence to a lower weight. 
Hence, Case B appears to perform the best for the example 
problem. 

The example thirty-eight bar truss was redesignedwith the 
constraints of Cases (i) and (ii). The design cycle history of 
structural weights using the recursive Cases A-F is given in 
Tables 7 and 8 .  The iteration history for the six cases is shown 
in Figures 4 and 5 .  In Figure 4 ,  all the recursive cases appear 
to converge with Case A producing the lowest weight. The curve 
for Case B displays the most stable convergence. As the frequency 
band is increased in Figure 5 ,  all the cases appear to converge 
to the same weight, but the path of convergence is more 
dispersed. 
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CONCLUSIONS 

In this paper, minimum weight designs of truss systems with 
multiple frequency constraints wereobtained using OC methods with 
a new resizing strategy based on relaxation techniques. .A 
computationally adaptive control parameter was used in 
conjunction with available OC recursive formulae. T o  i nc rease  t h e  
overall rate of convergence, the modified .litken accelerator w a s  
employed during the design cycle. Several recursi\-e schemes to 
modify the design variables and to estimate the Lagrange 
multipliers have been compared. It is premature to general1:- 
state which scheme was superior for frequency constraint design 
problems until more case studies are complete. Yinimum weight 
designs wereobtained for various frequency constraint conditions, 
even though their design may be undesirable due to other 
practical considerations. Practical estensions of this work  call 
f o r  including displacement constraints. 
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Table 1 Ten Bar Truss 
Initial and Final Frequencies ( H z )  in Different Constraint CondiriOni 

Frequency 
No. 

Weight (lb) 

Notes : 

Initial 
Design 

0, = 10.0 

9.1 8 
(8.96) 
27.31 

(27.08) 
29.79 

(27.45) 
53.si 

(51.25) 
61.06 

(58.00) 
68.35 

(64.73) 
69.95 

(66.87) 
82.1 1 

(80.85) 

3.04 
(3.26) 
10.00 

10.00 
(10.19) 

11.44 
( 16.01) 

12.86 
(1 8.08) 

17.34 
(22.96) 

26.01 
(25.2 1) 

26.81 
(27.25) 

(10.00) 

w1 = 7.0 
o2 3 15.0 

0, = 7.0 
o2 3 15.0 
0) 3 20.0 

7.00 
(7.00) 
15.45 

(15.58) 
17.36 

( 16.93) 
18.83 

(1 8.75) 
28.36 

(29.1 3) 
29.71 

(30.30) 
47.70 

(46.9 3) 
50.3 1 

(49.67) 

7.00 
(7.00) 
16.30 

( 15.61) 
20.15 

(20.17) 
20.24 

(20.7 7) 
29.08 

(28.76) 
29.88 

(29.76) 
4852 

(53.88) 
51.41 

(56.03) 

11 37.3 1 1 80.4 
(1172.6) I (1308.4) 

3.71 
(4.40) 
10.35 

(1 2.14) 
14.00 

( 14.00) 
14.33 

(1 7.89) 
16.84 

(1 9.58) 
19.52 

(22.96) 
30.33 

(34.01) 
31.84 

(35.72) 

4115 
(489.1 7) 

* present analysis using exponential resizing and approximate 
Lagrange multi lier formulae. 

( via reference [2f' 
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Table 2 Ten Bar Truss 
Optimum Design Variables (in’) in LX f fereid Constraint conditwns’ 

wl=7.0 w1 b 3.5 
Element 1 ol = 10.0 I o1 = 7.0 I w2 b 15.0 I w2 b 10.0 

No. w2 >/ 15.0 o3 > 20.0 o, b 14.0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.887 
(0.910) 

0.889 
(0.821) 

0.887 
(0.910) 

0.889 
(0.821) 

0.360 
(0.768) 

0.208 
(0.570) 

0.788 
(0.712) 

0.788 
(0.712) 

0.276 
(0.58 1) 

0.276 
(0.581) 

5.769 
(5.51 1) 

1.944 
(1.937) 

5.769 
(5.51 1) 

1.944 
(1.937) 

0.125 
(0.207) 

0.448 
(0.414) 

3.302 
(3.616) 

3.302 
(3.616) 

2.211 
(2.4 14) 

2.211 
(2.414) 

5.254 
(5.672) 

2.446 
(3.823) 

5.254 
(5.672) 

2.446 
(3.823) 

0.125 
(0.646) 

0.720 
(0.321) 

3.739 
(4.191) 

3.739 
(4.1 91) 

2.109 
( 1.604) 

2.109 
( 1.604) 

1.021 
(2.306) 

1.211 
(1.304) 

1.02 1 
(2.306) 

1.211 
(1.304) 

0.213 
(0.639) 

0.343 
(0.557) 

1.661 
( 1.029) 

1.661 
(1.029) 

0.605 
(0.800) 

0.605 
(0.800) 

I Weight (lb) 256.7 1137.3 1180.4 411.5 I (304.5) 1 (1172.6) I (1308.4) I (489.17) 

Notes : 
* present analysis using exponential resizing and approximate 

Lagrange multi lier formulae 
( 1 via reference [2 P 

Table 3 Thirty-Eight Bar Truss 
Design Cycle History f o r  w: = 2500 and oi 2500 (rad/sed2 

Notes : 
# present analysis using exponential resizing and 

+ via. reference 111 
* with acceleration 

approximate Lagrange multiplier 
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Notes : 
f present analysis using exponential resizing and 

+ via. reference [I] 
* with acceleration 

approximate Lagrange multiplier 

14 
15 
16 
17 

Table 5 Ten Bar Truss 
Dzsign Cyde History of Structural Wdgk 

Using Varbus OC Rnvrdw Formulae 
w.  2 3 3  , 0.3 10 & w, a 14 Hz. 

435571 
432.681 
429.841 
427.068 

C.P.U. 
(sc.) (3.16) 0.86) (3.33) (3.17) (2.28) (3.99) 

Notes : 
A exponential rrsizing/appmrimate Lagrange multipier formulae 
B linear mizinghpproximate Lagrange multiplier formulae 
C exponential resizing/exponential Lagrange multiplier formulae 
D linear mizing/expnentid Lagrange multiplier formulae 
E exponential resizing/linear Lagrange multiplier formulae 
F linear rcsizing/linear Lagrange multiplier formulae 
* with acceleration 
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Tabk 6 Ten Bar Truss 
Drsl n Cycle Hlrto o &urd Parameter 6 

&sin Varkus 9 ~ecauslve Forwwh 
o. 245 , w. 10 & 0.2 14 Hz. 

Nom : 
A exponential rmizing/approximatc Lagrange multiplier formulae 
B linear nsizing/approximate Lagrange multiplier formulae 
C exponential resizing/erponential Lagrange multiplier formulae 
D linear resizing/erponential Lagrange multiplier formulae 
E exponential resizing/linear Lagrange multiplier formulae 
F linear resizing/linear Lagrange multiplier formulae 
* with acceleration 

Tub& 7 Thirty-Eighf Bar Truss 
Design Cycle History o f  Structural Weight 

Using Various OC Recursive Formulae 
0: = 2500 t w: 2 2500 (rad/sec.I2 

Notes : 
A exponential resizing/approximate Lagrange multipier formulae 
B linear resizing/approximate Lagrange multiplier formulae 
C exponential resizing/exponential Lagrange multiplier formulae 
D linear resizing/exponential Lagrange multiplier formulae 
E exponential resizing/linear Lagrange multiplier formulae 
F linear resizing/linear Lagrange multiplier formulae 
* with acceleration 
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1 
2 
3 
4 
5 
6 

27.742 30.1 86 26.888 26.965 26.888 26.965 
26.577 26.965 29.175 32.344 29.278 32.344 
26.888 28.090 37.388 32.410 211.307 32.518 

* 25.776 * 27.450 27.629 26.922 72.092 26.964 
26.287 26.085 25.920 * 31.820 
26.154 * 27.844 L -  _ _  _ _  

7 25.987 26.752 
8 25.976 

Notes : 
A exponential resizing/approximate Lagrange multipier formulae 
B linear resizing/approximate Lagrange multiplier formulae 
C exponential resizing/exponential Lagrange multiplier formulae 
D linear resizing/exponential Lagrange multiplier formulae 
E exponential resizingllinear Lagrange multiplier formulae 
F linear resizingllinear Lagrange multiplier formulae 
* with acceleration 
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X 4 2 

fi 91+. .+  cm (360 in.) 

Figure 1 Ten bar truss 

Connectlng Connect lng Connectlng 
Nodes Element N o d e s  Elenent Nodes Element 

14 7-9 27 13-16 

1-4 16 8-9 2 9  14-16 
2 - 3  1 7  8-10 3 0  15-17 

3-5 1 9  9-12 3 2  16-17 
20 10-11 3 3  16-18 

1 1-2 
2 
3 
4 
5 2 - 4  
6 
7 3- 6 

1 - 3  15 7-10 28 14-15 

18 9-11 31 15-10 

21 10-12 3 4  17-19 

5-  8 2r, 12-13 37 18-20 

8 4 - 5  
9 4-6 22 11-13 35 17-20 

s-7  23 11-14 36 18-19 

6- 7 25 12- 14 38 19-20 

10 
11 
12 
11 6-8 26 13-15 

0 10 17 16 18 20 2 7 I k- 4 6  

1 - 4  450' ,-1 
F i g u r e  2 Thirty-eight bar truss 
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Figure 3 Iteration history for ten bar truss with rnul.tiple 
frequency constraints 

T h i r t y - E i g h t  B a r  T r u s s  
w, = 2500 w, S 2500 
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Iteration Number 

N o h  : 
A : axpontnti.1 ruirinJ.pproxim.(. h p a n l c  multiplier formulae 
B : linear rcsirin~/.pproxlm.k h#ranlc mulliplicr 1ormul.s 
C : exponential reairinl/sxpontntial h l r a n l c  multiplier formulae 
D : lincnr re*izinl/exponcnlid h l r a n l c  multiplier formuhe 
E : nponmti.1 r.mi*inl/lins.r L.lr.np multrplier 1ormul.c 
Q : linear re*irln#/linc.r hlr.n#c multiplier lormuhe 

Figure 4 I t e r a t i o n  history for thirty-eight bar truss 
with multiple frequency constraints 
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T h i r t y - E i g h t  Bar T r u s s  
w = 2500 w S 3000 
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Nota  : 

A : exponential rcairin&/approrimalc hgrangt  mulliplicr lormuhe 
B : linear reairing/.pprorimatc Lagrange multiplier formulae 
C : exponentid reririnc/exponential hgrance multiplier foormul.c 
D : linear resirin#/riponcnli.l hgr.n#t mulliplicr lormuhe 
E cxponcnti.1 re.izing/lins.r hgrmngc mulllplmr formulae 
F . linear rcsiring/line.r hgranse mulbpllcr formu1.c 

Figure 5 Iteration history for thirty-eight bar truss 
with multiple frequency constraints 
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